Model-based Execution and Model-based Reactive Planning

Limitations of Model-based Configuration Management

- All transitions must be directly commandable. Requires hand coding nonlocal control procedures.
 - proc close(valve)unless on(driver) turn-on(driver);send(driver,close-valve)
- Presumes that commands can be interleaved arbitrarily without destructive interaction or changes in effect.
 - close(valve); turn-off(driver)OK
 - turn-off (driver); close(valve)WRONG

Limitations of Model-based Configuration Management (cont.)

- MR generates a sequence of recovery actions, there is not a tight feedback loop between MR commanding and MI monitoring.
 - MR produces task net
 E.g., close(valve);
 turn-off(driver) where
 proc close(valve)
 unless on(driver) turn-on(driver);
 send(driver,close-valve);

Model-based Reactive Execution

Model-based Reactive Executive

- MI generates most likely current state
- MR generates least cost target state
- MRP generates first control action in sequence for reaching the target.
- MI confirms desired effect of first action.

Model-based Reactive Control System

< S, Θ , E >

- S is a transition system $<\Pi, \Sigma, T>$ with initial state Θ .
- E is a model-based reactive executive with
 - input goal configurations: γ : g_0 , g_1 ...
 - input observables: $\sigma : o_0, o_1 \dots$
 - output control actions $\mu : \mu_0, \mu_1 \dots$

S evolves along trajectory $s: s_0, s_1 \dots s.t$:

- $S_0 = \Theta$
- $\sigma_i \in \Sigma$, and agrees with σ_i , μ_i and s_i
- $s_{i+1} = \tau(\sigma_i)$
 - results from a failure transition,
 - satisfies g or
 - $\langle s_i, s_{i+1} \rangle$ is the prefix of a simple (loop free) nominal trajectory that ends in a state satisfying g.

Why plan myopically by assuming the most likely state is correct?

- Reduces computational cost.
- MI gathers information about action affects that confirm or deny this assumption.
- If the most likely state is incorrect, MI moves to a less likely state by elimination
- Eventually the correct state is reached.
- If no irreversible action is taken, this strategy will eventually reach the target, given that it was initially reachable

REQUIREMENT 1:

MRP only considers
reversible control actions
except when the only effect
is to repair failures.

How does MR search efficiently over the set of feasible target states?

- How do we enumerate the set of least cost states without generating all possible plans?
- Can the reachable target states be efficiently enumerated by increasing cost?

Target achieves $\mathbf{g}_{\mathbf{i}}$

Solution falls out of the development of the reactive planner